U-SILYLATED ENOLATES IN ORGANIC SYNTHESIS: SULPHUR-MEDIATED ALKYLATION OF ESTERS WITH ALKENES.

Shailesh K. Pate1 and Ian Paterson* Department of Chemistry, University College London, 20 Gordon Street, London WClH AOJ, England.

Summary: 0-Silylated ester enolates can be alkylated, under ZnBr₂-catalysis, by the PhSC1adducts of mono- and di-substituted alkenes to give Y-phenylthioesters, from which sulphur can be removed both reductively and oxidatively. This alkene carbosulphenylation reaction is stereospecific (anti) with variable Markovnikov regioselectivity.

Addition of metal enolates to electron-defficient alkenes, the Michael reaction, is a wellestablished method for the a-alkylation of carbonyl compounds. Simple alkenes, in contrast, are not directly useful in enolate chemistry and need first *to* be suitably activated to nucleophilic attack. 1 We now report that the desired transformations (e.g. $1 \rightarrow 2$ or $1 \rightarrow 3 + 4$) can be easily accomplished by using the adducts $\bf(6)$ of alkenes with phenylsulphenyl chloride 2 as alkylating agents, under mild ZnBr₂-catalysis, for *O*-silylated enolates.^{3,4} This is then followed by either (a) simple reductive desulphurisation $(7 \div 2)$, or (b) sulphoxide formation and cycloelimination $(7 \div 3 + 4)$.³

TABLE: $_{\rm o}$ Reaction of 0-silylated enolates with **6** (1 equiv., CH₂C1₂, 20°C, 16h), catalysed by dry ZnBr $_2$," followed by (a) reductive desulphurisation (Raney Ni; Me $_2$ CO, 20 $^{\rm o}$ C, 3h) or (b) sulphur oxidation (NaIO $_4$; aq. MeOH, 20ºC, 16h) and sulphoxide thermal cycloelimination (C1 $_2$ CCC1 $_2$, 120ºC, $\,$ l-3h).

 a the t-butyldimethylsilyl enolate (i.e. BuⁱMe₂Si for Me₃Si in $\boldsymbol{9})^\top$ was used for the acetate reactions. b yields refer to isolated products throughout. c determined by 1 H-NMR. d mixture of two diastereomers, both *trans.*

1316

Sec-alkylation using β -chlorosulphide (6)² was successful with a wide range of esterderived⁵ O-silylated enolates (9-13 in Table). Trans-products (7)⁶, $J_{\eta i\alpha}$ = 11-12 Hz, were obtained in each case (i.e. retention of configuration in 6). This new alkene carbosulphenylation reaction⁷ presumably involves initial Lewis acid-catalysed equilibration of the β -chlorosulphide (6) to the episulphonium ion (5), followed by nucleophilic trapping⁷ to give 7. Sulphenylation, however, can be a competing pathway, leading to the isolation of varying amounts of the simple α -phenylthioesters (8) as side-products. For mono- and di-substituted alkenes 8 was usually a minor product (O-10%), but for tri- and tetra-substituted cases sulphenylation occurred almost exclusively.

Raney nickel desulphurisation of 7 cleanly gave the saturated esters (2) , while sulphur oxidation followed by sulphoxide thermal cycloelimination gave mixtures of the β, γ - and γ, δ -unsaturated esters $(3 \text{ and } 4, \text{ respectively}).$

We next examined the stereo- and regio-chemistry 6 of the alkylation of representative 0silylated ester enolates (mainly 9 and 10) with a range of PhSCl-adducts of alkenes, as summarised in diagrams (15) to (27). In each case, the addition of PhSC1 (CH₂C1₂, -78 + 20^oC)² was essentially quantitative, and the alkene adduct(s)² formed could be used directly in a 'one pot' reaction with the appropriate O-silylated enolate and ZnBr_2^8 (CH₂Cl₂ 20^oC, 1-16h).

Ethylene itself gave the least reactive β -chlorosulphide (15) examined, which gave a low yield of y-phenylthioester (16), even under forcing conditions. Cyclopentene carbosulphenylation proceeded smoothly and, in the case of 17 for $R_1=R_2=M$ e, sulphoxide thermolysis gave a mixture of the alkylated cyclopentenes (18 and 19), where the trisubstituted isomer (18) predominated. Notably, cis - and trans-but-2-ene reacted stereospecifically to give the diastereomeric esters (20 and 21, respectively), where overall anti addition is inferred from the trans-adducts obtained from cycloalkenes. In addition, oxidative sulphur removal from 20 and 21 (R=H or Me) gave mixtures of mono- and tri-substituted alkenes $(22 + 23)$, or $22 + 24$, respectively).

The ratio⁶ of secondary (Markovnikov) to primary alkylation using terminal alkenes was found to be variable. Styrene gave exclusively the α -sec-benzyl esters (25, R₁=Ph, R₂=H, R₃=H or Me), while propene and hex-1-ene gave mixtures (highest selectivity 6:1) of 25 and 26. The more substituted 0 -silylated enolate (10) generally gave higher regioselectivity than 9 towards secalkylation. *Iso-*butene gave only $text_a1ky1$ ated products (25 , R,=R,=Me) in reaction of it: PhSC1 adducts $\tilde{ }$ with both $\bf{9}$ and $\bf{10}$. Attempts to use more highly substituted alkenes, e.g. 2methylbut-2-ene and 2,3-dimethylbut-2-ene, failed to give useful amounts of alkylated products; the α -phenylthioesters (8) were now obtained in high yield.

In a typical alkylation reaction, a solution (1M in CH_2Cl_2) of PhSCl⁹ (2.0 ml, 2 mmol) was added dropwise to a stirred solution of alkene (2.1 mmol) in dry CH₂Cl₂ (2 ml) at -78°C under Ar. Alternatively, gaseous alkenes could be bubbled into the PhSCl' solution at -78'C until the red colour disappeared. The colourless solution of β -chlorosulphide² produced was warmed to room temperature, and the O-silylated enolate^{3,4} (2 mmol) was added, which was followed directly by a catalytic amount of dry ZnBr, $\frac{8}{2}$ (ea. 20 mg). After 1-16h, the reaction was evaporated in vacuo and the residue flash chromatographed on SiO₂ to give the α -alkylated ester directly. Reductive and oxidative sulphur removal were carried out as described previously,³ except that Cl₂CCCl₂ was now used as solvent for the cycloeliminations.

Finally, both high regio- and stereo-selectivity are sometimes possible together. Adoition of PhSCl *to* 3-methylcyclohexene gave a complex mixture of B-chlorosulphides, which on reaction with **10** gave a single alkylation product (27) .^{6,10} Confirmation of this structure (27) , as assigned by 1 H-NMR, 10 was obtained by sulphoxide thermolysis,where only alkene ($\bf 28$) was obtained. The syn-elimination of PhSOH from \boldsymbol{z}^{-10} must occur exclusively with the axial hydrogen, H-1 (elimination to the equatorial hydrogen, H-3, would give rise to a trans-cyclohexene). Raney nickel desulphurisation gave the $trans\text{-}\mathrm{d}$ isubstituted cyclohexane (29).

Acknowledgements: We thank the S.E.R.C. and the University of London Central Research fund for support.

Notes and References:

¹For an alternative approach using Pd(II)-complexation of alkenes, see: L. S. Hegedus, R. E. Williams, M. A. McGuire, and T. Hayashi, J. Amer. Chem. Soc., 102 , 4973 (1980).

 2 For the regio- and stereoselectivity of PhSCl addition to alkenes, see: W. H. Mueller and P. E. Butler, *ibid*, 90, 2075 (1968); P. B. Hopkins and P. L. Fuchs, *J. Org. Chem.*, 43, 1208 (1978), and other references therein.

 3 This is the homologue of our earlier phenylthioalkylation reaction with α -chloroalkylphenyl sulphides (PhSCHClR): I. Paterson and I. Fleming, Tetrahedron *Letters, 993, 995,* and 2179 (1979).

 4 Y. Kita, J. Segawa, J. Haratu, H. Yasuda, and Y. Tamura, J.C.S. Perkin I, 1099 (1982).

 5 The less nucleophilic silyl<code>enol</code> ethers<code>of</code> ketones<code>generally</code> gave<code>poor</code> alkylation <code>yield</code> (typically 25-40% with 6) using this method. For the sec-alkylation of ketones using thioketals, see: M. T. Reetz and A. Giannis, *Synth. Corn., 11,* 315 (1981).

6 Isomeric purity was determined by 13C- and **'H-NMR (200** MHz). Isomer ratios in alkylations were measured by $1_{H- NMR}$ of the crude product mixtures and confirmed by weighing the HPLC-separated regioisomers.

 7 Related additions involving reaction of episulphonium ions (either isolated or generated in situ) with various heteroatom nucleophiles have been described; however, carbosulphenylation has so far been restricted to malonate and cyanide ions: W. A. Smit, M. Z. Krimer, and E. A. Vorob 'eva, Tetrahedron Letters, 2451 (1975); B. M. Trost, T. Shibata, and S. J. Martin, J. Amer. Chem. Soc., 104, 3228 (1982).

 8 Commercial ZnBr₂ was dried at *ca*. 200°C/0.5 mmHg.

⁹PhSC1 was prepared by chlorination of thiophenol (SO₂C1₂, pentane, 0 + 20°C, 16h), and was stored and used as a 1M solution in CH2C12 under Ar. M. Fieser and L. F. Fieser, *Reagents* for Organic Synthesis, Wiley, New York, Vol. 5, p. 523 (1975).

 10 H-NMR: $\,$ $\rm \delta (CDC1_{3}, \,$ $\,200$ MHz) 7.08-7.45 (5H, m, Ph), 3.6 (3H, s, MeO), 3.03 (1H, dd, $^{J}2$, $\rm \delta$ $\,$ $\,^{J}3$ $\,$ $\,^{J}3$ $\,$ $\,^{J}3$ 10.4,H-2_{ar}), 2.43(1H,ddd,J3.8, 10.4, 10.4,H-1_{ar}), 2.07 (1H, m, H-3_{2a}), 1.78-1.95 (1H, m) 1.36-1.75 (5H, m), 1.21 (3H, s, MeCMe), 1.15 (3H, d, J 8.1, Me) and 1.12 (3H, s, MeCMe). 13 C-NMR: \circ (CDC13) 179.47, 136.74, 131.35, 128.81, 126.57, 56.48, 51.90, 44.66, 41.27, 32.94,32.94,27.01, 26.78,20.36, 18.13, and 14.27.

(Received in UK 10 January 1983)